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Abstract

Over 10 years, mesenchymal stem cells (MSCs) have been considered as valuable and suitable cells for cell-based therapy
applications, particularly in clinical trials. In any case, they are as yet not utilized routinely in clinics. At first, it was believed that
MSCs play their roles, especially in regenerative medicine due to their differentiation and cell replacement properties.
Interestingly, it is well-known that MSCs mainly exert their therapeutic effects through their vast bioactive factors. These findings
turned scientists’ consideration toward cell-free therapy concepts. From this point of view, MSCs can be considered as an arsenal
of natural bioreactors in variety of therapeutic agents. MSCs inherently express various important therapeutic agents such as
growth factors and cytokines that can be manufactured, handled and stored as a prepared-to-go biologic product. In this review,
we provide a vision, highlight as well as discuss in order to introduce competitive natural robust bioreactor MSCs on the horizon.
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Introduction

Mesenchymal Stem Cells (MSCs) are multipotent stem cells that
have a well-defined capacity for self-renewal [1]. MSCs express
CD73, CD105, and CD90, while they have no expression of
CD34, CD45, CD14 or CD11b, CD19a, and HLA-DR surface
markers. Moreover, they have the capacity to differentiate into
adipocytes, osteoblasts, and chondroblasts in vitro [2, 3]. Over
the past decade, MSCs have gained much more attention in
regenerative medicine area because of homing ability, immune
regulatory properties [4], lower ethical concerns, and tumorige-
nicity [5], as well as, transdifferentiation capacity [6], tissue-
organ repairing, and promoting the survival of damaged tissues
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[7]. In addition, MSCs-based therapies have been performed in a
number of trials worldwide [8] (https://clinicaltrials.gov).

In spite of many advantages of MSCs for cell therapy pur-
poses, there are several challenges for clinical use. Some of
them are; uncontrolled cell quality, invasive cell isolation pro-
cess, loss of potency, limited lifespan, the gradual loss of their
initial properties during expansion and in vitro proliferation. It is
noteworthy that, stressful conditions such as oxidative stress,
serum deprivation, inflammation, chemotherapy and radiother-
apy in the recipients’ tissues/organs, decrease the cell’s survival
dramatically, resulting in the death of around 99% of MSCs
during a few days after transplantation [9—18]. Inadequate quan-
tity of transplanted cells is another remarkable limitation of
MSC:s application. Noteworthy, more than one hundred million
of MSCs require for cell therapy and it takes about ten weeks to
prepare sufficient cells before transplantation. Furthermore,
clinical features and age of patients are other concerns which
influence on the optimal culture conditions of MSCs [19, 20]. In
other words, aging and senescence phenotype in MSCs are
other important limitations for clinical use. It has been shown
that MSCs from aged-patients exhibit characteristics of aging
and senescence such as epigenetic modifications, DNA muta-
tions, mitochondrial dysfunction, and telomere length [21]. It
has also been revealed that growth kinetic of adipose-derived
stromal/stem cells (ASCs) is positively correlated with the do-
nor’s age. The proliferation of MSCs decreased in elderly
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people whereas apoptosis increased. Moreover, it seems that the
differentiation potentials of MSCs change with increased age
[16, 22, 23]. These observations indicate a necessary efficient
solution to rejuvenate MSCs in vitro when clinical applications
of them are considered.

Moreover, some evidence indicating that MSCs have a
cancerous origin in the body tissues [24, 25]. In other words,
there are common characteristics between MSCs and cancer
stem cells that may result in tumorigenesis, which make them
unsuitable for direct utilize in the clinic.

Furthermore, the effect of metabolic disorders on MSC'’s fate
could be other limitation of them in clinical application. In other
words, metabolic disorders may cause an effect on quality of
MSC:s. It has been shown that MSCs harvested from equine with
metabolic disorders had lower proliferation rate, mitochondrial
dysfunction, and higher autophagy cell death in comparison with
healthy equine. Overall, the results of this study indicated that
autologous MSCs transplantation could be challengeable in pa-
tients who are suffering from metabolic disorder [26].

On the other hand, a body of studies indicates that the
therapeutic properties of MSCs are owing to their paracrine
effects of growth and nutritional factors. Other studies have
also shown that the stem cell-derived secreted agents are able
to exert therapeutic effects without presence of any other cells
[27-29]. MSCs’ secretory trophic factors, hormones, and cy-
tokines are known as secretome that can be produced in

environment which stem cells are grown; which named that,
conditioned medium (CM) [4] (Fig. 1). Note that, exosomes
are part of the MSC secretome.

Therefore, in recent years, MSCs-derived secretome has
been introduced as a promising candidate for novel cell-free
therapy. For example, Camussi et al. reported that MSC’s
secretome prohibited kidney injury [30, 31]. In addition, it
has been shown that the MSC exosomes of mice exert thera-
peutic effects to improve pulmonary hypertension in lung tis-
sue [32, 33]. Other studies also indicate the MSC’s secretome
therapy promoted re-epithelialization of cutaneous wounds by
inducing epithelial cell proliferation [34] and angiogenesis
[35]. Several studies have been shown the presence of cyto-
kines, hormones and growth factors in MSCs-derived CM
which resulted in repairing of damaged tissues [36—45].

Here, we are going to introduce MSCs as an arsenal of
therapeutic, beneficial and high-performance agents. In other
words, we discuss and highlight the presence of various
growth factors/cytokines and tissue regenerative factors, that
making the MSCs as a natural, valuable, promising and ver-
satile bioreactor in order to produce pharmaceuticals agents.

Secretome as a Novel Approach for Cell-free Therapy

MSCs have the ability in order to produce a wide range of
chemokines, cytokines, growth factors and extracellular
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Fig. 1 MSCs secretory trophic factors, hormones, and cytokines are
known as secretome. Growth factors: BDNF; Brain-Derived
Neurotrophic Factor, EGF; Epidermal Growth Factor, FGFs; Fibroblast
Growth Factor, HGF; Hepatocyte Growth Factor, IGFs; Insulin-Like
Growth Factor, VEGF; Vascular Endothelial Derived Growth Factor.
Cytokines: TGF-f31; Transforming Growth Factor Beta, IL-6;
Interleukin 6, IL-10; Interleukin 10, IL-27; Interleukin 27, IL-17E;
Interleukin 17E, IL-13; Interleukin 13, IL-1Ra; Interleukin 1 receptor
antagonist, [L-8;Interleukin 8, IL-9; Interleukin 9, IL-1b; Interleukin-1b.
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Peptide & hormones: Ang; Angiopoietin, BMPs; Bone Morphogenetic
Proteins, CNTF; Ciliary Neurotrophic Factor, EPO; Erythropoietin,
GDNF; Glial cell line-Derived Neurotrophic Factor, G-CSF;
Granulocyte Colony Stimulating Factor, GM-CSF; Granulocyte
Macrophage CSF, MCSF; Macrophage CSF, HO-1; Hemoxygenase-1,
IDO; Indoleamine 2,3-Dioxygenase, MCP-1; Monocyte chemotactic
Protein, MIF; Macrophage Migration Inhibitory Factor, PGE2;
Prostaglandin E2, SCF; Stem Cell Factor, SDF-1; Stromal Cell-Derived
Factor 1, TSG-6; (TNF)-Stimulated Gene-6, LL37
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matrix (ECM) molecules. The MSC’s niche including a vari-
ety of microenvironmental signals which are generated during
healing, development or diseases, in turn, it regulates tissue
regeneration through proliferation and differentiation [46].
The secretome is defined as a series of molecular factors
which is secreted into extracellular space. These factors con-
sist of hormones, soluble proteins, cytokines and growth fac-
tors [47]. The scientific evidence indicates that similar to the
cellular counterpart, MSC’s secretome can be used in order to
exert favorable effects in tissue regeneration [48]. In other
words, cytokines and growth factors produced in MSCs can be
used for cell-free regenerative medicine. Interestingly, each cyto-
kine and growth factor can be considered as a novel potential
therapeutic agent [48]. Therefore, it may have a significant im-
pact in the near future. Table 1 indicates the studies dealing with
the usage of CM for treatment of a variety of diseases. However,
depend on the tissues that MSC’s CM/secretome have been iso-
lated the contents of them are variable.

Advantages of Secretome as a Therapeutic Agent

As previously mentioned, the secretome is cell-free.
Therefore, in allogeneic usage, it will reduce the risk of ad-
verse reactions. On the other hand, secretome’s therapeutic
doses can be achieved with one million of MSCs. Secretome
can be stored at —80 °C without any significant loss of quality
and function which is ready to use after thawing immediately
[50, 61]. In terms of stability, some growth factors/cytokines
such as IL-6 are stable; IFN-y and MIP-2 are somewhat stable
at 4 °C and TNF-«, IL-10 and IL-17A are not stable in
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secretomes. Therefore, secretome containing IL- 10 and IL-
17A can be stored at —80 °C; however, it is recommended to
measure after the first thaw [62]. However, regarding with
stability of secretome further studies are required.

The secretome-based therapy can be performed at the reg-
ular intervals for a long time, for example at weekly intervals,
providing therapeutic courses instead of a single therapeutic at
only one- time point. Figure 2 shows some advantages of
secretome in regenerative medicine [50, 61, 62].

Secretome-based Therapy in Regenerative Medicine

A number of studies have been shown that secretome contains
of immune-modulatory, anti-inflammatory, anti-apoptotic, an-
ti-oxidant, anti-fibrotic, anti-bacterial and neuroprotective
properties. Therefore, it can be employed in a variety of dis-
eases. Moreover, it represents a ready-to-use therapeutic
agent. Table 2 shows some current therapeutic applications
in regenerative medicine. It is noteworthy that the majority
of studies dealing with employing of secretome are in preclin-
ical studies. Overall, these studies indicate that secretome,
like. MSCs, is applicable for curing many of diseases.

MSCs as a Natural Arsenal of Therapeutic Agents

The various secretory agents produced by MSCs in the
microenvironment could have a therapeutic potential.
These secretory agents include growth factors, pro-
inflammatory and anti-inflammatory cytokines, as well as
other peptides and hormones. As mentioned before, it’s
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identified most of them with a general name. “secretome”.
It can be injected by several ways: 1) direct injection into
damaged tissues 2) intravenously, 3) transdermal and 4)
intramuscular. The different proteomic studies have shown
that various agents are present in secretome [31, 63,
81-85]. In fact, if MSCs consider as “building blocks”,
their cytokines, growth factors and hormones can be as-
sumed as “workers”. Growth factors lead to the activation,
stimulation, and mobilization of stem cells from their ori-
gin. If more specific growth factors are produced, it would
be possible in order to regenerate the damaged tissue spe-
cifically. Table 3 shows some cytokines, growth factors and
hormones which are secreted by MSCs and their potential
functions for tissue regeneration/repair.

Cytokines, Growth and Soluble Factors Act
as Immunomudulatory

MSCs interact with various lymphocytes. During the innate
and acquired immune systems, MSCs are able to inhibit the
activation of pro-inflammatory monocytes and macrophages
using secreting soluble factors such as transforming growth
factor-f3 (TGF- {3), hepatocyte growth factor (HGF), nitric ox-
ide (NO), heme oxygenase (HO), interleukin (IL)-6, prosta-
glandin E2 (PGE2), indoleamine 2, and 3-dioxygenase (IDO)

Innate Immunity

«Inhibit pro-inflammatory M1 macrophages

A Alternatively activate anti-inflammatory M2 macroPhages
@Induce anti-immunosuppressive functions

Inhibit differentiation to mature dendritic cells

Fig. 3 Immunomodulatory properties of MSC-secretome. MSCs interact
with various lymphocytes. During the innate and acquired immune
systems, MSCs are able to inhibit the activation of pro-inflammatory
monocytes and macrophages through the secretion of soluble factors.
Additionally, MSCs inhibit the differentiation of monocytes into fully

[107, 108]. Based on preclinical studies, it has been shown that
MSCs have suppressive effects on both adaptive and innate
immunity systems [109, 110]. MSCs are able to inhibit the
activation of pro-inflammatory monocytes and macrophages.
Moreover, in the presence of MSCs and their soluble factors,
monocytes and macrophages may acquire anti-
immunosuppressive functions. Moreover, MSCs inhibit the
differentiation of monocytes into fully matured dendritic cells
(DCs). The tolerogenic DCs produce a high level of IL-10 and
decrease the ability of stimulate allogeneic T-cell proliferation
in a mixed lymphocyte reaction [111-118]. MSCs prevent the
proliferation and cytotoxicity of natural killer cells (NKs) main-
ly through PGE2 and IDO productions. MSCs are also able to
suppress T-cell proliferation through the secretion of various
soluble factors and inhibit T-cell activation. The immune mod-
ulatory factors are summarized in fig. 3. In addition, extensive
clinical trials dealing with the immunomudolatory contribution
of MSC-derived growth factors/ cytokines have also been re-
ported (http://clinicaltrials.gov). MSC-derived growth factors/
cytokines have been promising for treatment of graft versus
host disease(GVHD) [119, 120], inflammatory and autoim-
mune diseases such as multiple sclerosis or Crohn’s disease,
diabetes mellitus type I and systemic lupus erythematosus
(SLE) [110]. Pretreatment of MSCs with IFN-y resulted in
preventing of GVHD [121, 122] .

Adaptive Immunity

L
og / ey TGF-B
0 PGE2
Ly DO NK
/N J
PGE2
TGF-B °

¢

Induce semi-mature tolerogeneic DCs with reduced

A ability to stimulate allogeneic response

L
| ®

\f

Inhibit proliferation Nk cell

Inhibit cytotoxicity Nk cell

Suppress T-cell proliferation

Modulate inflammatory profile of helper T cells

matured dendritic cells (DCs). MSCs prevent the proliferation and cyto-
toxicity of natural killer cells (NKs) and suppress the proliferation of the T
cell. They also prevent the activation of the T cell through the cell to cell
contact. MQ; Macrophage, MO; Monocytes, DC; Dendritic cells, NK;
Natural killer
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Tissue- Specific MSC-derived Factors

The various factors may be presented into secretome as a cocktail
and act in concert in order to promote regeneration. Therefore, it
is important to analyze a complete set of growth factors and
cytokine levels for every kind of stem cell-derived secretome/
conditioned medium. While the content of the various cytokines
in a certain secretome/conditioned medium is known, the poten-
tial outcome can be increased and translated to targeted therapy
in regenerative medicine [45]. For example, bone regeneration
could be occurred in the presence of insulin-like growth factor
(IGF-I and IGF-II), transforming growth factor beta (TGF-p3),
fibroblast growth factor (FGF), platelet-derived growth factor
(PDGF), parathyroid hormone-related peptide (PTHRP), bone

Table 6 Mesenchymal stem cell recombinant growth factors

morphogenic protein(BMP) into secretome/conditioned medi-
um. Furthermore, the presence of epithelial growth factor
(EGF), TGF- {3, hepatocyte growth factor (HGF), vascular en-
dothelial derived growth factor (VEGF), PDGF, FGF-1&ll,
TGF-«, and keratinocyte growth factor (KGF) play an important
role in wound healing. Some of the specific growth factors and
cytokines, which are implicated in the regeneration and repair of
any tissue/disease, are listed in Table 4.

Growth Factors, Cytokines, and Hormones Available
in the Market

The emergence of new classes of therapeutic agents which
manufactured by biotechnology is one of the more exciting

Product Quality grade Description Source
Human FGF-1 Research grade Recombinant human fibroblast growth factor 1 E. coli
Human FGF-2 Research grade Recombinant human fibroblast growth factor 2 E. coli
Human BDNF Research grade Recombinant human brain-derived neurotrophic factor  E. coli
Human BMP-2 Research grade & Premium grade Recombinant human bone morphogenetic protein 2 E. coli
Human BMP-4 Research grade & Premium grade Recombinant human bone morphogenetic protein 4 Pichia pastoris
Human BMP-6 Research grade Recombinant human bone morphogenetic protein 6 HEK?293 cells
Human BMP-7 Research grade Recombinant human bone morphogenetic protein 7 CHO cells
Human EG-VEGF Research grade Recombinant human endocrine gland-derived E. coli
vascular endothelial growth factor
Human EGF Research grade & Premium grade Recombinant human epidermal growth factor E. coli
Human FGF-2 IS research grade Recombinant human fibroblast growth factor 2 IS
(improved sequence)
Human G-CSF research grade Recombinant human granulocyte colony- E. coli
premium grade stimulating Factor
Human Galectin-1 research grade Recombinant human galectin 1 E. coli
Human GM-CSF research grade Recombinant human granulocyte macrophage E. coli
premium grade colony—stimulating factor
Human HGF Research grade Recombinant human hepatocyte growth factor E. coli
Human IFN-a2a Research grade Recombinant human interferon «2a E. coli
Human IFN-«2b Recombinant human interferon a2b
Human IFN-31a Research grade Recombinant human interferon 31a CHO cells
Human IFN-f31b Recombinant human interferon 31b E. coli
Human IFN-y1b Research grade IFN-y Recombinant human interferon y1b E. coli
Human IGF-1 Research grade Recombinant human insulin-like growth factor 1 E. coli
Human IGF-2 Recombinant human insulin-like growth factor 2
Human M-CSF Research grade Recombinant human macrophage-colony stimulating ~ E. coli
Factor
Human MCP-1 Research grade Recombinant human monocyte chemotactic protein 1~ E. coli
Human MIF Research grade Recombinant human macrophage migration inhibitory  E. coli
Factor
Human SCF Research grade Recombinant human stem cell factor E. coli

Human SDF-1«x

Human TGF-f31 Human
TGF-2 Human TGF-33

Human TNF-«

Human VEGF

premium grade
Research grade

Premium grade
Research grade

Premium grade
Research grade

Research grade

Recombinant human stromal cell-derived factor 1

Recombinant human transforming growth factor 31

HEK293 cells

Insect cells HEK293 cells

Recombinant human tumor necrosis factor o E. coli
Yeast
Recombinant human vascular endothelial growth factor Insect cells
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frontiers in medicine. The possibility of clinical usage of re-
combinant growth factors and cytokines expressed by MSCs
has been proved; however, the application of that is limited.
Reproducibility of the growth factors, cytokines, HLA incom-
patibility and the infectious agentstransmission possibility
might be the reasons behind them. The emergence of MSC-
derived growth factors and cytokines will address many of
these problems and pave the way for its evaluation in a variety
of diseases. A number of cytokines have already been licensed
by the Food and Drug Administration (FDA) in clinical appli-
cation (Table 5). The FDA must evaluate an ever-increasing
number of new growth factors and cytokines. In order to de-
velop regulatory policy for using of these products from lab-
oratory bench to the bedside, several factors including those
combined sound scientific principles and good clinical medi-
cine should be considered, however, the final goal should be
beneficial for patients. In order to achieve a successful cell-
based clinical trial, high quality of raw materials is essential.
Interestingly, the MSCs inherently express many growth fac-
tors and cytokines with the highest degree of good
manufacturing practice (GMP). Therefore, harvesting these
therapeutic agents from MSCs would be an important part of
the stem cell research industry in perspective of natural biore-
actor and producer cells. Table 6 summarizes some of these
growth factors and cytokines which produced by several com-
panies that are used for laboratory and research purposes. It is
noteworthy that the GMP of MSCs-derived growth factors
and cytokines are different from those stem cells that
transplanted to patients. When MSC-derived growth factors
and cytokines are packaged properly, they can be transported
easily like other drugs and they do not need cryopreservation.
However, in comparison with recombinant growth factors that
may be stable for a long period of time and also produced on a
larger scale in non-stem cell hosts, MSC-derived growth fac-
tors and cytokines which need more optimization in terms of
production and stability. A number of growth factors and cy-
tokines in the secretome which have been expressed separate-
ly in MSCs using recombinant DNA technology are presented
in Table 7. For clinical application, a large amount of growth
factors/cytokines are needed. Hence, manufacturing large
quantities (scale-up) of hMSC’s secretome based on GMP-
procedures will be challenging.

For clinical application, it is essential to improve the pro-
duction of MSC-derived growth factors/ cytokines. A variety
of biotechnological techniques such as suspension culture,
cultivating with three-dimensional (3D) scaffolds, cultivating
with an advanced bioreactor, cultivating under sublethal doses
of oxidative stress, hypoxia and magnetic field (MF) can be
employed in this area [16, 143]. The aims of aforementioned
techniques are to simulate and reproduce the stem cell niche in
order to improve MSCs quality and in turn MSC-derived
growth factors/cytokines. In addition, genetically modified
MSCs with cytoprotective factors such as nuclear factor-

@ Springer

Table 7 A number of growth factors and cytokines in the secretome
which have separately been expressed in MSCs by recombinant DNA
technology

GMP Grade MSC Agents
GMP Recombinant Human FGF-2

GMP Recombinant Human
Flt3-ligand
GMP Recombinant Human GM-CSF GMP Recombinant Human IL-4

GMP Recombinant Human GM-CSF  GMP Recombinant Human IL-6
GMP Recombinant Human SCF GMP Recombinant Human IL-7
GMP Recombinant Human TNF-o«  GMP Recombinant Human IL-15
GMP Recombinant Human IL-1f3 GMP Recombinant Human IL-21

GMP Recombinant Human IL-2
GMP Recombinant Human IL-3

erythroid 2-related factor 2 (Nrf2), TGF(31, HO-1, lipocalin
2 (Len2), VEGEF, hypoxia-inducible factor (HIF-1x), IGF-1
and etc. could be other strategies to improve MSC-derived
growth factors/ cytokines [16-18, 76].

Conclusion

In clinical perspective, MSCs have drawn lots of interests for
more than one decade. However, concerns about tumor for-
mation and low survival rate after transplantation are the main
limitations that impair their widespread usage in clinic.
Instead, a number of studies have shown that MSCs can exert
their therapeutic roles via producing of a vast array of bioac-
tive molecules such as growth factors, cytokines, peptides,
hormones, and microRNAs. These unique properties of
MSCs are convincing to call MSCs as an arsenal of therapeu-
tic agents. In other words, MSCs naturally and innately act as
a bioreactor in order to produce a large number of valuable
pharmaceutical products as well as, open a new horizon for
basic, clinical scientists and marketing.
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