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Abstract
In autoimmune disease body’s own immune system knows healthy cells as undesired and foreign cells. Over 80 types of 
autoimmune diseases have been recognized. Currently, at clinical practice, treatment strategies for autoimmune disorders are 
based on relieving symptoms and preventing difficulties. In other words, there is no effective and useful therapy up to now. It 
has been well-known that mesenchymal stem cells (MSCs) possess immunomodulatory effects. This strongly suggests that 
MSCs might be as a novel modality for treatment of autoimmune diseases. Supporting this notion a few preclinical and clini-
cal studies indicate that MSCs ameliorate autoimmune disorders. Interestingly, it has been found that the beneficial effects of 
MSCs in autoimmune disorders are not relying only on direct cell-to-cell communication but on their capability to produce 
a broad range of paracrine factors including growth factors, cytokines and extracellular vehicles (EVs). EVs are multi-signal 
messengers that play a serious role in intercellular signaling through carrying cargo such as mRNA, miRNA, and proteins. 
Numerous studies have shown that MSC-derived EVs are able to mimic the effects of the cell of origin on immune cells. In 
this review, we discuss the current studies dealing with MSC-based therapies in autoimmune diseases and provide a vision 
and highlight in order to introduce MSC-derived EVs as an alternative and emerging modality for autoimmune disorders.
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Introduction

Autoimmune disorders occur when the body is not able to 
distinguish between self and non-self. In other words, in this 
condition, the immune system mistakes part of our body 
as foreign thereby attacks and destroys self-molecules [1, 
2]. Correspondingly, autoimmune diseases are estimated to 
affect at least 2–5% of the population in developed countries, 

and the incidence is increasing. Many of these diseases are 
common in the 20- to 40-year age group. They are also more 
common in women than in men. Autoimmune diseases are 
usually chronic and often debilitating; with an enormous 
medical and economic burden [3]. Autoimmune diseases 
are antibody-mediated diseases. Conspiciously, the anti-
bodies can either bind to antigens on particular cells or in 
extracellular tissues or by antigen–antibody complexes that 
form in the circulation and are deposited in vessel walls. In 
organ-specific disease the antibody is directed toward anti-
gens in a single organ. Addison disease is an example of 
organ-specific disease, in which autoantibodies attack the 
myasthenia gravis and adrenal cortex in which they attack 
neuromuscular cells [3–5].

By contrast, systemic autoimmune diseases are a broad 
range of related diseases in which the immune cells attack 
autoantigens and resulted in inappropriate inflammation and 
affect multiple tissues and organs, although some sites are 
particularly susceptible, such as kidneys and joints [4, 5].

Based on the preclinical and clinical studies, it has been 
shown that the cytokines belonging to proinflammatory 
cytokines produced by M1 macrophages, Th1 and Th17 
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cells (TNF, IFN-gamma, IL-12, IL-18, IL-22 IL-23, IL-17, 
MIF) contribute to the initiation of autoimmune diseases, 
whereas, anti-inflammatory cytokines (IL-4, IL-10, IL-13 
IL-35, TGF-beta) that are produced from M2 macrophages 
decrease the inflammation and alleviate the condition. It 
has been revealed that Th1 cells and their proinflammatory 
cytokine such as IL-17 and IL-22 have been implicated in 
the pathogenesis of RA. Furthermore, based on studies con-
ducted on RA animal model and RA patients, it has been 
shown that there was a significant association between weak 
response of anti-TNF therapy and the higher level of Th17 
cells and their cytokine especially IL-17. Meaningly, these 
findings have led to focus of studies on the inhibition of 
Th17 cells pathway signaling and their producing cytokines 
especially co-inhibition of both IL17 and IL22 [6].

Initially, it has been shown that Th1 cells and their 
cytokine are implicated in Guillain–Barre syndrome (GBS), 
an immune-mediated acute inflammatory disorder in the 
peripheral nervous system (PNS), and also it is confirmed 
for its animal model i.e. autoimmune neuritis (EAN). How-
ever, recent studies have been indicated that the pathogenesis 
of GBS/EAN is much more complicated and other cells such 
as Th17, Th2, and Treg, could be attributed in the disease. In 
this account, the net effects of Th cytokines play important 
roles in the pathogenesis of EAN and GBS [7].

A number of studies have been revealed that MS patients 
had an elevated level of serum IL-23 and IL-17 and had 
a higher proportion of Th17 cells in peripheral blood. In 
other words Th17 cells and Th17-related cytokines may be 
implicated in the pathogenesis of MS [8].

Macrophage migration inhibitory factor (MIF) is another 
pro inflammatory type 1 cytokine that plays a crucial role in 
several inflammatory autoimmune diseases. For example, 
increased MIF plasma levels has been found in GBS patients 
as compared to healthy controls and interestingly there was a 
positive correlation between MIF circulating concentration 
and patient’s disability. Moreover, monoclonal antibody or a 
chemical inhibitor of MIF effectively decreased the severity 
score reduced disease duration in murine EAN highlighting 
that targeting MIF could be a promising therapy for inflam-
matory demyelinating peripheral nerve disorders [9].

It also has been shown that MIF and its homolog 
D-dopachrome tautomerase (D-DT) contribute in the devel-
opment of progressive male multiple sclerosis (MS) sub-
jects. Interestingly, lacking of MIF and D-DT ameliorates 
the disease severity of the murine model of MS, autoimmune 
encephalomyelitis [10].

This findings were further supported in other mouse 
model of MS i.e. Experimental Allergic Encephalomyelitis 
(EAE) which indicate there is an important role of the MIF 
pathway in MS ethiopathogenesis and that interventions 
specifically blocking MIF receptors might be considered as 
therapeutic strategy in the clinical setting [11].

On the other hand, upregulated function of some anti-
inflammatory cytokines such IL-4 and IL-13 and TGF-beta 
are implicated in some autoimmune diseases. Usually, IL-4 
and IL-13 are considered as T helper 2-associated immune 
responses (i.e., type 2 immunity). Up regulated functions 
of IL-4 and IL-13 have been reported to implicate in the 
allergic response. Therefore, Therapeutic targeting of the 
IL-4/IL-13 pathway might be employed as a therapeutic 
strategy for treatment of patients suffering from allergic 
diseases such as asthma, atopic dermatitis, and eosinophilic 
esophagitis [12].

However, for treatment of other diseases such as neurode-
generative diseases, osteoporosis and diabetes might require 
the enhancement of IL-4 and/or IL-13 activities highlighting 
the pleotropic and complex functions of these two cytokine 
in disease pathophysiology.

Upregulated function of other anti-inflammatory 
cytokine, TGFß, has been reported as a key cytokine in the 
hepatic fibrosis. Targeting of TGFß either by direct inhibi-
tion or interferon (IFN) gamma therapy, given the antago-
nizing effect of IFN gamma on TGFß, have been resulted in 
improvement of in both liver inflammation and fibrosis [13].

It is really important to mention that the pro and anti-
inflammatory cytokine hypothesis in autoimmunity is not 
a rule as certain autoimmune diseases such as SLE seem to 
depend on the combined action of pro and anti-inflammatory 
cytokines. It this way, the precise role of inflammatory of 
anti-inflammatory cytokines in SLE is still controversial 
and requires further and intense investigations to utilize 
cytokine-based therapies for treatment of SLE [14].

Considerably, the endogenous cytokine network in auto-
immune diseases might play an important role in terms of 
effectiveness of therapy. The relevance of the endogenous 
cytokine network in autoimmune diseases is highlighted by 
the fact that certain drugs used in autoimmune diseases seem 
to act by modulating the endogenous cytokine network and 
naturally occurring inhibitors of pro inflammatory cytokines 
such as IFN-beta and corticosteroids that increases blood 
levels of TGF-beta and IL-1 receptor type II and IL-1 recep-
tor antagonist in multiple sclerosis, anti-TNF-alpha mAb that 
increases TGF-beta in rheumatoid arthritis and tecfidera that 
increases blood levels of IL-4 in multiple sclerosis [15–18].

Therefore, the understanding of the contribution of pro 
inflammatory cytokines to the pathogenesis of certain auto-
immune diseases has led to the advent of biologics for the 
treatment of autoimmune diseases. The first biologic was 
anti-TNF-alpha mAb approved 20 years ago for the treat-
ment of RA. There are now several specific inhibitors of 
pro inflammatory cytokines in the clinical setting including 
antagonists of IL-1, TNF-alpha, IL-17A, IL-6, IL-12/23 that 
are used for the treatment of RA, IBD and psoriasis [19–21].

However, treatment of autoimmune diseases by biolog-
ics has been also resulted in several limitations including 
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high costs, immunogenicity with development of neutral-
izing antibody and the side effects (lymphoma and de novo 
induction of autoimmune diseases) [22, 23].

For example, monoclonal antibodies and fusion proteins 
to block TNF in patients with RA have been considered as 
a an important milestone for treatment of RA disease. How-
ever, due to induction of Antidrug antibody (ADAs) drug 
safety and efficacy might be affected. Furthermore, ADAs 
have an important role in causing a secondary response fail-
ure. In other words, efficacy of the biologic (TNF inhibitor) 
will be lost over time despite a good initial response [24, 25].

About 80 types of autoimmune disorders that may affect 
different systems and organs in the body have been reported. 
So far, there is not a real and effective therapy for autoim-
mune diseases and the conventional immune suppressive 
agents such as methothrexate, steroids and infliximab act 
to alleviate symptoms. Furthermore, these treatments have 
long-term side effects, as well as a need for life-long treat-
ment [1, 2]. Therefore, an alternative and more efficient 
therapy strategy for treatment of autoimmune diseases has 
always been considered by both basic and clinical scientists. 
Interestingly, recently it has been found that mesenchymal 
stem cells (MSCs) might be as a novel therapeutic option for 
autoimmune disorders [26].

Relatively, multipotent MSCs have a variety of useful 
applications including unique immune properties [27–31]. 
Over the last decade, MSCs have been reported to possess a 
marked immune-regulatory effect against autoimmune disor-
ders. For instance, MSCs are able not only to inhibit natural 
killer (NK) proliferation and activity but also suppress T/B 
cell proliferation and dendritic cells (DC) maturation [29, 
32]. Because of these clinically relevant features, MSCs have 
gained much more interest for application in autoimmune 
disorders.

Recently, growing evidence has been indicated that the 
beneficial effects of MSCs in autoimmune disorders are not 
relying only on direct cell-to-cell interaction but on the par-
acrine action of MSCs [27, 32, 33]. Moreover, bodies of 
studies have shown that only a small proportion (typically 
less than 1%) of culture- expanded MSCs survive and incor-
porate into host tissues indicating the therapeutic effects of 
MSCs cannot be fully explained by direct cell-to-cell inter-
action [33–36].

Importantly, MSCs-based therapy for many diseases 
including autoimmune disorders, could be due to either 
producing of a vast array of biomolecules such as proteins, 
mRNA, and microRNAs through the release of secretory 
growth factors or extracellular vehicles (EVs) [27, 30–32, 
34, 36, 37].

Though the physiological role of MSC- derived EVs is 
not currently well understood, several studies indicate that 
they play an important role in tissue repair and anti-cancer 
therapy [33–35].

Numerous studies have been shown that EVs, similar to 
MSCs, involve in some physiological functions such as cell 
proliferation and differentiation, genetic exchanges, antigen 
presentation, angiogenesis, tumor metastasis and immune 
system responses [34]. Furthermore, the ability of MSC-
derived EVs to mimic the effects of the cell of origin has 
been studied on various different effector cells. MSC-derived 
EVs not only contribute to the recovery of damaged tissue 
and the manipulation of the immune system but also they do 
not represent the disadvantages of their original cells [34]. 
It is noteworthy to mention that stem cells therapy raised 
several concerns including immune rejection, senescence, 
low cell survival and concern about the possibility of cancer 
formation [30, 33, 34, 38–40]. Furthermore, genetic manipu-
lations of MSCs can increase the oncogenic potential of the 
cells. In the light of these observations, the clinical applica-
tions of MSCs should be concerning [33, 41].

In this review, we discussed and focused on the recent 
findings dealing with the application of MSC for therapeu-
tic purposes in autoimmune diseases by highlighting the 
importance of MSC-derived EVs and also the mechanisms 
by which MSCs or MSC-derived EVs suppress an immune 
response.

Immunosuppressive potential of MSCs

MSCs are a rare, heterogeneous population of non-hemat-
opoietic stem cells that originally reported by Friedenstein in 
1976 as a fibroblast- like cellular population in bone marrow 
(BM) [42, 43]. Johnson and Dorshkind in 1986 and Pittenger 
et al. in 1999 isolated MSCs from BM by density gradi-
ent centrifugation to eliminate unwanted cell types. They 
showed only 0.001 to 0.01% of the cells isolated from the 
density interface were MSCs that provide the structural and 
functional support for hematopoietic stem cells (HSCs) in 
their niche [34]. Although MSCs were traditionally and gen-
erally isolated from bone marrow, but it was subsequently 
shown that MSCs can be obtained from a variety of sources 
such as adipose tissue, skeletal muscle, synovium, the cir-
culatory system, peripheral blood, dental pulp, liver, lung, 
amniotic fluid, placenta and umbilical cord (UC) [30, 34, 44, 
45]. In 2006, the International Society of Cellular Therapy 
(ISCT) defined MSCs by three criteria including adhesion 
properties to plastic under standard tissue culture conditions, 
expression of certain cell surface markers such as CD73, 
CD90, and CD105, and no expression of other markers 
including CD45, CD34, CD14, or CD11b, CD79 alpha or 
CD19 and HLA-DR surface molecules and the differentia-
tion capacity into osteoblasts, adipocytes, and chondroblasts 
under in vitro conditions [46, 47]. MSCs of all sources are 
able to exert a range of biological functions (Fig. 1). The 
immunosuppressive effects are the well-known functions of 
MSCs. In other words, this indicates that MSCs could have 
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therapeutic potential for treatment of autoimmune diseases. 
In fact, the immunosuppressive properties of MSCs have 
been shown in several in vitro and in vivo studies [48–50].

In human, MSCs express moderate expression level of 
human leukocyte antigen (HLA) major histocompatibility 
complex class I with no expression of major histocompat-
ibility complex class II and no expression of co-stimulatory 
molecules (CD80, CD86 and CD40, CD40L) [51–56]. In 
addition, researchers have found that MSCs use mechanisms 
that involve cell contact and secretion of different molecules 
during the regulation of the immune responses (Fig. 2).

MSCs-derived cytokines/growth factors play an impor-
tant role in the immune suppressive potential of MSCs. 

IFNγ is one of these molecules and play an important role 
in immune modulatory property of MSCs. IFNγ usually 
exerts the immune modulatory effects together with other 
cytokines such as TNF- α, IL-1 α, IL-1ß or IL-17. Moreo-
ver, IFNγ induces the expression of regulatory molecules 
such as vascular cell adhesion molecule 1 (VCAM-I), 
intercellular adhesion molecule 1 (ICMA-1), Jagged-1 and 
2, programmed death-ligand 1 (PD-L 1) and human leu-
kocyte antigen G1 (HLAG1) in the immune response [27, 
57–59]. Moreover, other immunomodulatory molecules 
such as interleukin-10 (IL-10), hepatocyte growth factor 
(HGF), transforming growth factor β (TGF-β), indoleam-
ine 2,3-dioxygenase (IDO), interleukin-6 (IL-6), galectin 

Fig. 1  Biological functions of mesenchymal stem cells. MSCs are 
able to exert a wide range of biological functions. HGF hepatocyte 
growth factor, bFGF basic fibroblast growth factor, KGF keratinocyte 
growth factor, MMP-2 metalloproteinase-2, VEGF vascular endothe-
lial growth factor, TGF-β1 transforming growth factor, IL-6 interleu-

kin-6, NGF Nerve growth factor, BDNF brain derived neuron trophic 
factor, IGF Insulin-like growth factor, VEGF vascular endothelial 
growth factor, PDGF platelet-derived growth factor, IDO indoleam-
ine 2,3-dioxygenase, PGE2 prostaglandin E2

Fig. 2  MSC-derived immunomodulatory cytokine/growth factors. 
Upon an inflammatory microenvironment, MSCs activate and express 
immunosuppressive molecules. MSCs obtain immunomodulation 
function through mechanisms that involve cell contact and secretion 
of different molecules such as IL-10, IL-6, PGE-2 and TGF-β. IL-6; 
interleukin-6, IL-8; interleukin-8, IL-7; interleukin-7, IL-37; interleu-
kin-37, IL-1Ra interleukin-1Ra, TGF-β1 transforming growth factor, 
IDO indoleamine 2,3-dioxygenase, VCAM-1 vascular cell adhesion 

molecule 1, PGE2 prostaglandin E2, HGF hepatocyte growth factor, 
IL-12 interleukin-12, M-CSF macrophage colony-stimulating factor, 
FGF fibroblast growth factor, HLA-G5 human leukocyte antigen-G 
molecules, G-CSF granulocyte-colony stimulating factor, IGF Insu-
lin-like growth factor, TSG-6 TNF-stimulated gene 6 protein, IFγ 
interferon gamma, LPS lipopolysaccharides, TNF-α tumor necrosis 
factor-α ICAM-1 intercellular adhesion molecule 1, MVs microvesi-
cles, Exo exosome
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(Gal)-1, and nitric oxide (NO) that modulate innate and 
adaptive immune responses are secreted by MSCs [27, 58, 
59]. MSCs suppress T-cell proliferation, cytokine secretion, 
regulate the balance of Th1/Th2, modulate the regulatory T 
cells (Tregs), and regulate B-cell activity and antigen pres-
entation of dendritic cells [60–63]. As mentioned, one of 
the immunomodulatory functions of MSCs is to promote 
regulatory T cells (Tregs). It has been revealed that some 
MSC-derived soluble factors such as TGF-β1, HLA-G4, and 
PGE2 act as Treg inducers [64].

Notably, MSCs can reduce pro-inflammatory cytokines, 
comprising tumor necrosis factor (TNF), and repressing 
inflammation. As mentioned above, TNF is a master media-
tor of the pathogenesis of autoimmune diseases and chronic 
inflammation. It has been shown that TNF can deregulate 
the balance between Tregs and pathogenic Th1 cells and 
Th17 in RA patients and impairs Treg functions in MS and 
RA patients [55, 56].

Consequently, MSCs at least in part by anti-TNF property 
could be employed as a therapeutic modality for autoim-
mune diseases.

It is well worth to mention that TNF, IFNγ, and IL-1 
in inflammatory tissues might strengthen the immunosup-
pressive functions of MSCs [36–38]. Supporting this notion, 
it has been shown that, pre-treatment of MSCs with IFNγ 
increased the immunosuppressive potential [39]. Addition-
ally, it has been revealed that other immunosuppressive mol-
ecules, chemokines and growth factors such as TGFβ, IL-8, 
and TSG-6, were produced by TNF-primed MSCs are able 
to attenuate the symptoms in diseases including myocardial 
infarction, EAE, cutaneous wound,, and ischemic hind limb 
likely via TNFR1 signaling path way [65, 66].

Immunosuppressive functions of MSCs could also be 
owing to production of TGF-β by this cells. MSC-derived 
TGF-β1 regulates the activity of NK cells, T cells, mast 
cells, macrophages/microglia [67, 68]. MSC-derived TGF-
β1 also plays an important modulation role in differentiation 
of T helper (Th) subsets. For example, it has been shown that 
overexpression of TGF-β1 in mBM-MSCs improved their 
therapeutic potential in a model of type 1 diabetes with an 
increased Th2 response [69, 70].

MSCs are able to inhibit B-cells proliferation and anti-
body production in the presence of IL40, CD40L, cyto-
sine–phosphate–guanosine (CpG), interleukin (IL)-2, 
anti-immunoglobulin, and IL-4. Interestingly, they had no 
effect on B-cells following stimulation by CpG and allo-
geneic T-cell-depleted peripheral blood mononuclear cells 
(PBMCs). However, the immunomodulatory effects of 
MSCs on B-cells are still unclear and even controversial. 
Moreover, MSCs affect the maturation of dendritic cells 
(DC) by down-regulating of MHC class II and co-stimu-
latory molecules expression [71–74]. MSCs also modulate 
expression of IL-10 and IL-12 [75]. MSCs trough expression 

of high level of TGF- γ decreases the proliferation of NK 
cells and increases differentiation of Treg lymphocytes 
CD4 + CD25 + Foxp3+ [76]. It has been revealed that MSCs 
can delay the apoptosis of neutrophils preserving and pre-
vent infections [77]. It is noteworthy that the interaction 
between immune cells and MSC is bidirectional [78]. The 
immunomodulatory effects of MSCs on immune cells have 
been shown in Fig. 3.

Of note, regarding the action of mesenchymal stem cells 
in autoimmune diseases there is a possible interference of 
this treatment via production of cytokines on the signaling 
pathway that dysregulation of which may be implicated in 
the pathogenesis of certain autoimmune diseases. For exam-
ple, it has been demonstrated that MSCs via the production 
of IL-6 suppress cell proliferation of astrocytes and activate 
its downstream AMPK/mTOR signaling pathway, thereby 
exerted their therapeutic effects by improvement of memory 
and learning impairment of hypoxic-ischemic brain damage 
(HIBD) rats.

Interestingly, down regulation of IL-6 expression in 
MSCs abolished the above regulatory functions of MSCs 
in hippocampal astrocytes. Furthermore, by utilization of 
rapamycin (inhibitor of AMPK/mTOR signaling pathway) 
it was confirmed that mTOR involved in the proliferation of 
reactive astrocytes [79].

Noticeably, it is required to say that the PI3K/AKT/
mTOR pathway, as an intracellular signaling network, regu-
lates proliferation, cell activation, apoptosis, and metabo-
lism. A number of studies suggest that the deregulation of 
PI3K/AKT/mTOR pathway might be implicated in autoim-
munity. For example, it has been revealed that there is an 
involvement of PI3K/AKT/mTOR pathway in the etiopatho-
genesis of MS. Supporting this notion, it has been shown 
that targeting of PI3K/mTOR pathway by rapamycin, an 
immunosuppressive drug that has been widely used to treat 
some autoimmune disease, has been resulted in the improve-
ment of MS symptoms [80].

Importantly and interestingly, rapamycin does not block 
proliferation of regulatory T cells (Tregs) [81]. Therefore, 
down modulating the mTOR pathways may represent an 
additional important tool by which mesenchymal therapy 
dampens autoimmune diseases.

MSC‑based therapy in autoimmune diseases

Autoimmune diseases are more prevalent in women and 
considered as the second leading cause of chronic illness in 
the United States [82]. The conventional therapies not only 
are not so efficient but also having long-term side effects. 
Therefore, alternative and new modality for treatment of 
autoimmune diseases is needed. MSC-based therapy would 
be one of the versatile and promising strategies for treat-
ment of autoimmune diseases. Supporting this notion, the 
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application of MSCs for treatment of autoimmune diseases 
has been shown in a number of animal models and clinical 
trials (Tables 1, 2).

Cell‑free therapy for autoimmune diseases

Recently, many scientists believed that the beneficial effects 
of MSCs are owing to the paracrine activity of MSCs not to 
their cell replacement properties and/or differentiation prop-
erties [34, 92–94]. The paracrine activity of MSCs could 
be considered as a novel therapeutic perspective in order to 
develop a safe and potentially more advantageous alterna-
tive to MSC-based therapy i.e. cell-free strategies. Notably, 
MSC-derived EVs are an example of the paracrine activity 
of MSCs. In below MSC-derived EVs will be discussed in 
more detail.

MSC‑derived extracellular vesicles

Early studies have described EVs as ‘garbage bags’ by which 
cells eliminate unwanted proteins and other molecules [95]. 
EVs, or more accurately nanoparticles, Size 30–1000 nm, 
are a term used for vesicles that are enclosed by a phos-
pholipid bilayer and released either during cell stress or 
under basal conditions [96–99]. Furthermore, they also 

play a crucial role in the development and progression of 
diseases [100]. MSCs also can release several types of EVs 
[97]. The International Society for Extracellular Vesicles 
has suggested that the term EVs can be used preferentially 
to describe prepared vesicles from body fluids and cell cul-
tures. Recently, EVs are classified into two major groups 
Exosomes (Exos) and Microvesicles (MVs) based on their 
biogenesis, molecular mechanisms underlying the release of 
EVs and size [93, 97, 101].

Exosomes are cup-shaped or rounded EVs with a diam-
eter of 30–130 nm. They can be isolated by ultracentrifuga-
tion at 100,000×g or above for 1–2 h [96, 102, 103]. Alix, 
Tsg101, tetraspanins, CD9, CD63, and CD81 are associated 
markers with exosomes [33, 98, 104, 105]. Of note, Exo-
Carta database contains a comprehensive list of proteins, 
lipids, and RNAs associated with MVs (http://www.exoca 
rta.org) [104].

Exosomes are the only class of EVs known to be derived 
from early endosomes through the invagination of the endo-
somal membrane to form a multi vesicular body (MVB) or 
late endosomes with numerous ILV [33, 96, 97]. The bud-
ding of ILVs from the late endosomes and amalgamation 
of these MVBs with the plasma membrane require some 
factors such as Rab and Ral GTPases, SNAREs, and the 
V-type ATPase [106].

Fig. 3  Immunomodulatory property of MSCs. MSCs can target lym-
phocytes, regulatory T-lymphocytes (Tregs), B-lymphocytes, Plasma 
cells, Natural killer (NK) cells, neutrophils, mast cells, monocytes, 
and dendritic cells. These effects may be mediated by cell contacts, 
soluble factors and MSC-derived EVs. LIF leukemia inhibitory fac-
tor, HGF hepatocyte growth factor, TGF-β1 transforming growth fac-

tor, PGE2 prostaglandin E2, IL-4 interleukin-4, IL-6 interleukin-6, 
IL-8 interleukin-6, IL-37 interleukin-37, IFγ interferon γ, IL-10 inter-
leukin-10, GM-CSF Granulocyte–macrophage colony-stimulating 
factor, IDO indoleamine 2,3-dioxygenase, NO nitric oxide, M-CSF 
macrophage colony-stimulating factor, IL-10 interleukin-10, HLA-G 
human leukocyte antigen G

http://www.exocarta.org
http://www.exocarta.org
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Micro vesicles (100–1000 nm) are arising from the bud-
ding of the plasma membrane through the reorganization 
of membrane phospholipids and increased concentration 
of  Ca2+ that activates enzymatic cascade [34, 98]. ADP-
ribosylation factor 6 (ARF6), ADP-ribosylation factor 1 
(ARF1), Rab, Rac1 (also known as Ras-related C3 botu-
linum toxin substrate 1) and Ras homolog family member 
A (RhoA) are required for cargo sorting and micro vesicle 
shedding [107]. As previously described, a wide range of 
molecules, including cytokines, growth factors, as well as 
miRNA have been identified in MSC-derived MVs (more 
than 700 proteins and 150 miRNAs).

Implication of MVs in regeneration of a number of tis-
sues such as liver, kidney, heart, and nervous tissues has 
been reported [108–114]. MVs can be isolated by cen-
trifugation, 16,000–20,000×g for 70–90 min at 4 °C [97].

It is worth mentioning that the more recent findings 
have been revealed the complexity and overlapping char-
acteristics of these nanoparticles [115]. However, in 
this review we use “extracellular vesicles” (EVs) for all 
secreted vesicles.

Mechanism of action

Originally, it was believed that EVs are cellular debris 
without important biological function. However, a number 
of studies indicate that EVs have a crucial role in both 
physiological and pathological conditions, modulation of 
the immune response, intracellular signaling, inflamma-
tion, and maintenance of homeostasis, cancer progression, 
angiogenesis, and coagulation [116, 117]. Supporting this 
notion, it has been shown that EVs might be considered 
as diagnostic, prognostic, and treatment monitoring bio-
marker [118].

EVs lipid bilayer membrane has transmembrane proteins 
and encloses nucleic acids and soluble proteins derived 
from the cell of origin [119]. EVs are able to shuttle lipids, 
carbohydrates, protein, lipids, messenger RNAs, long non 
coding RNAs, micro RNAs, and mitochondrial DNA into 
target cells [120, 121].

miRNA-carrying EVs have been shown to implicate in 
the immune synapsis between antigen presenting cells and 
T-cells. Furthermore, EV-mediated transfer of miRNAs 

Table 1  Preclinical studies of MSCs application in autoimmune diseases

hMSCs human bone marrow-derived mesenchymal stem cells, IP intraperitoneal injection, NZBxNZW F1 mice a model of systemic lupus ery-
thematosus, m-BMSCs mice bone marrow-derived mesenchymal stem cells, Treg regulatory T cells, EAE experimental autoimmune encephalo-
myelitis, TGF-β transforming growth factor beta, PGE2 prostaglandin E2, HGF hepatocyte growth factor, CCL2 C–C motif chemokine ligand 2, 
NOD non obese diabetic, IL-4 interleukin 4, IL-6 interleukin 6, IL-10 interleukin 10, AD-MSCs adipose tissue-derived mesenchymal stem cell, 
CIA collagen-induced arthritis, IV intravenous injection, Th1 T helper 1, Th17 T helper 17, Tfh Follicular helper T, ID intra dermal

Source Administration way of MSCs Outcomes/mechanisms Model Ref.

Murine
BMSCs

IV • MSCs inhibited T-cell proliferation
• MSCs did not induce apoptosis on T cells

EAE [83]

Murine
BMSCs

IV • MSCs did not have any effect on CIA model
• The suppressive effect of MSCs on the proliferation of T cell altered 

by adding TNFα

CIA [84]

hAD
MSCs

IP • MSCs decreased production of various inflammatory cytokines and 
chemokines

• hAD-MSCs reduced Th1/Th17 cell expansion
• MSCs induced de novo generation of antigen specific 

CD4 + CD25 + FoxP3 + Treg cells

CIA [85]

Murine
BMSc

IV • MSCs reduced the severity of arthritis
• MSCs reduced antibody titer and level of
• MSCs increased level of IL-4 in spleen cells

CIA [86]

Canine
AD-MSCs

ID • Immonomodulatory factors of MSCs such as TGF-β, PGE2, HGF, and 
IDO improved keratoconjunctivitis sicca

Dog with keratocon-
junctivitis sicca

[87]

Murine
ADMSC

IP • Down-regulation of the CD4 + Th1 and expansion of Tregs in the 
pancreatic lymph nodes led to improvement of NOD

NOD [88]

Murine
BMSCs

IP • MSC conditioned medium inhibited EAE-derived CD4 T cell activa-
tion by suppressing STAT3 phosphorylation via MSC-derived CCL2

• MSCs modulated EAE biology via the paracrine conversion of CCL2 
from agonist to antagonist of CD4 Th17 cell function

EAE [89]

hBM
MSCs

Retro-orbital injection of the 
venous sinus

• MSCs attenuated lupus nephritis by suppressing the development of 
Tfh cells and the subsequent activation of humoral immune compo-
nents

NZBxNZW F1 mice [90]

Mouce
BMSCs

IP • MSC therapy was not beneficial in Th2-type T cell- and B cell-driven 
diseases such as lupus

NZBxNZW F1 mice [91]
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might allow communication between dendritic cells, affect 
their function [122].

Bruno et al. studied the effect of MSC-derived EVs 
with that of the cell of origin in an experimental model 
of AKI [111]. Interestingly, they have been found that 
the EVs were able to mimic the effect of MSCs result-
ing in the morphological and functional recovery of AKI. 
These studies indicate that EVs derived from stem cells by 
induction of epigenetic changes and modulations of gene 
transcription in recipient cells stimulate tissue regenera-
tion [122]. In other words, EVs by delivering bioactive 
lipids, proteins, and nucleic acids can transfer the imprint-
ing of the originator cells to the recipient cells. Moreover, 
Quesenberry group revealed that the cell cycle status and 
the injury of the originator cells implicate in the epigenetic 
changes observed in bone marrow cells [122, 123].

The protein content of EVs derived from human bone 
marrow-derived MSCs and human CD133+ cells were 
profiled by Angulski et al. [67]. They have been found that 
although the EVs from both origins were qualitatively sim-
ilar, hMSC-EVs might induce/modulate more efficiently 
differentiation, migration, the metabolic state of the target 
cells, and phagocytosis and innate immune responses. On 
the other hand, the CD133+-EVs might be better modula-
tors or inducers of angiogenesis than hMSC-EVs.

It has been found that the lipids belonging to the double 
layer membrane surrounding the EVs not only have struc-
tural functions, but also act as conveyors of membrane-
derived bioactive lipids. EVs also have an important role 
in the “transcellular” synthesis of leukotrienes and pros-
taglandins. In other words, they represent an additional 
manner through which enzymes and substrates can be 
exchanged between cells [68].

Stem cell-derived EVs have been implicated in self-
renewal, differentiation, maturation and cell fate deter-
mination of stem cells [124]. In this regard, the roles of 
EV-derived ncRNA are prominent and beginning to be 
explored. Several studies have been indicated that EV-ncR-
NAs play important roles in the paracrine effects of stem 
cells and even the most EV-mediated regulatory effects 
elicited in cells are mediated through ncRNAs [124, 125].

For example, EVs carrying let-7b, from preconditioned 
MSCs, have been shown to implicate in transition from 
inflammatory phase toward the proliferative phase and 
regulation of macrophage plasticity that involve in the 
resolution of chronic inflammation [126]. miR146a, miR-
21, and miR-181 in the umbilical cord MSC-derived EVs 
have been shown to ameliorate inflammation during the 
tissue repair [127].
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In vivo bio distribution of EVs

In order to use MSC-derived EVs for clinical applications, 
the first requirement would be an establishment of a suit-
able MSC culture condition based on GMP compliance to 
isolate and produce EVs. Therefore, for successful and safe 
clinical utilization of MSC-derived EVs investigation of EVs 
bio distribution upon administration is essential [128]. Wik-
lander et al. studied the bio distribution of EVs in mice after 
systemic delivery [129]. EVs were isolated from different 
cell sources and labeled with a near-infrared lipophilic dye. 
It has been revealed that while EVs accumulated mainly 
in spleen, liver, lung, and gastrointestinal tract differences 
related to EVs cell origin were observed. Furthermore, the 
dose of injected EVs and the route of administration affected 
the bio distribution pattern. These findings highlight that 
for future EVs-based therapy in the clinic, these should be 
considered.

Grange et al. investigated the bio distribution and the 
renal localization of EVs in AKI [130]. MSC-derived EVs 
were directly or indirectly labeled with near infrared (NIR) 
dye and were injected intravenously (i.v.) into glycerol-
induced AKI mice model as well as into healthy mice. They 
have been found that the both labeling methods were suit-
able for the in vivo detection of the renal localization of 
EVs. Interestingly, it was revealed that MSC-derived EVs 
localized in injured, not normal kidneys, indicating their 
beneficial effects on recovery following AKI. However, So 
far there is no study dealing with the bio distribution pattern 
of EVs-based therapy for autoimmune diseases and warrants 
further studies in these regard.

In vitro effects of MSC‑derived EVs on innate 
and adaptive immunity

A number of studies indicate that the immunomodulatory 
activity of MSCs could be attributed to MVs (Table 3) [34]. 
It has been revealed that MSC-derived MVs are able to 
have an inhibitory effect on both B and T cells [131, 132]. 
However, the precise effects of MSCs-derived EVs and their 
mechanisms remain unclear.

It has been found that murine BM-MSCs- derived MVs 
can induce apoptosis in activated T-cells as well as increase 
the proportion of regulatory T CD4 + CD25 + FoxP3 + cells 
[145].

Juan et al. reported that adipose MSC-derived EVs can 
increase the expression of CX3CR1 in F4/80+/Ly6C+/
CCR2 + macrophage subsets in an acute experimental model 
(mouse) of thioglycollate-induced peritonitis and modulate 
an internal pro-inflammatory program in activated mac-
rophages [33, 146]. Furthermore, it has been shown that the 
MVs could alter miRNAs profiles. Of note, miR-155 and 

miR-21 which are involved in inflammation are regulated 
by MSC-derived MVs [132, 147].

Surprisingly, it has been reported that MSC-MVs sup-
press activation of mast cells through reduction of pro-
inflammatory cytokines release (especially TNF α), attenu-
ation of protease activity (including tryptase and chymase), 
increasing of prostaglandin E2 (PGE2) production, and 
up-regulation of E-prostanoid 4 (EP4) receptor expression 
[148].

It has also been shown that hAMSC-derived EVs are 
able to down-regulate macrophage activation by suppress-
ing Toll-like receptor signaling. Also, the EVs increased the 
proportion of Tregs and decreased the proportion of Th17 
[69, 149].

The immunomodulatory effect of BMSCs and their EVs 
on monocyte-derived DCs has been investigated in type 1 
diabetes. It was revealed that MSCs and MSC-derived EVs 
were able to inhibit the maturation and activation of DC 
[136].

In vivo studies dealing with MSCs‑derived EVs 
as a novel emerging modality for treatment 
of autoimmune diseases

MVs have a potential to inhibit the rupture of an intracranial 
aneurysm in a mouse model through reduction of mast cell 
activity [148]. Favaro research team provided evidence indi-
cates that MSC-MVs can prevent Th1 response via a vari-
ety of mechanisms including increasing the level of IL-10 
cytokines, PGE2 and TGF-β [150].

The immunosuppressive effects of MSC-derived EVs 
have been reported in an immune- induced liver injury 
model. It has been found that MSC-derived EVs as well as 
MSCs can suppress Concanavalin A (Con A) -induced liver 
injury [151].

Therapeutic potential of MSC-derived EVs has been 
shown in a preclinical study of EAE. The EVs inhibited 
auto reactive lymphocyte proliferation and increased levels 
of transforming growth factor (TGF)-β and interleukin (IL)-
10 and in splenic mononuclear cells [93].

Co-culture of THP-1 cells (a human monocytic cell line) 
with EVs has been resulted in shifting of activated CD4 + T 
cells to CD4 + CD25 + FoxP3 + regulatory T cells (Tregs) 
and improvement in the survival of allogeneic skin graft in 
mice [152].

Recently, the role of MSC-derived EVs in the reduction 
of arthritis signs in Collagen-Induced Arthritis (CIA) mod-
els has been shown. It was found that the EVs could exert 
their therapeutic effects through reducing of plasma blast 
cells and increasing B cells secreting IL-10 [134, 153].

In a model of multiple sclerosis, MSC-derived EVs 
inhibited auto-reactive lymphocyte proliferation and also 
increased the levels of IL-10 and TGF-β. Similarly, it has 
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been revealed that MSC-derived EVs after cell transplanta-
tion was a key factor to rescue bone marrow MSC function 
in lupus murine model [154].

The efficacy of MSC-derived EVs has been shown in a 
patient with refractory GVHD. Following the EVs therapy in 
the patients, improvement in the clinical GVHD symptoms 
were observed [135].

Autoimmune uveitis is one of the main reasons of visual 
disability around the world. The cause of uveitis is often 
unknown. It has been reported that periocular injection of 
human MSCs-derived EVs resulted in decreasing of experi-
mental uveoretinitis (EAU) signs in rats [155].

So far as we know to date, despite the noteworthy results 
of MSCs-derived EVs to inhibit inflammatory responses 
in vitro and in autoimmune disease in preclinical, the effect 
of purified EVs has not been reported in the human and 
preclinical model of SLE. However, more recently, Sharma 
et al. stated that the effects of MSC-derived EVs is going to 
be examined in vivo using a chimeric model of SLE devel-
oped recently in their laboratory [137].

More recently, the ability of induced pluripotent stem 
cells (iPSC) and their EVs to suppress immune responses 
on the onset of sialadenitis in the NOD mouse model of 
Sjögren’s Syndrome (SS) has been shown. Furthermore, it 
been found that iPSC-derived EVs prevented lymphocyte 
infiltration in SMGs and production of autoantibodies, how-
ever, the MVs efficacy was lower than the cells [138].

Conclusion

A number of studies have been shown that MSCs possess 
immunosuppressive capacity. Remarkably, these findings 
turned scientist’s attention to utilize MSC-based therapy 
for autoimmune diseases. Although a few clinical studies 
dealing with the potential application of MSCs for treatment 
have shown encouraging results, it has not still been led to 
a conventional therapy.

Moreover, tumorigenic potential of MSCs is a major 
concern. Interestingly, recent findings have indicated that 
the immunosuppressive properties of MSCs are because of, 
at least in part, to extracellular vesicle (EV) secretion. In 
other words, MSC-derived EVs can be utilized as a cell-free 
therapeutic alternative. Despite the positive results, based of 
preclinical and clinical studies, in which MSC-derived EVs 
have been used as a novel modality for treatment of autoim-
mune disorders, they are still in developing and research 
stages. It is noteworthy that EVs are classified as biological 
drugs and considered as advanced therapy medicinal prod-
ucts ATMPs. Therefore, They have own GMP regulation 
that differ with MSCs. However, with regard to storage and 
industrial-scale production, it seems more reasonable than 
MSCs. On the other hand, due to promising initial results N
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for clinical utilization of MSCs in some autoimmune dis-
eases such as Lupus Erythematous (LE), GVHD, Sjögren 
syndrome (SS), SLE, Crohn’s Disease and MS, it would be 
reasonable to expect that MSC-derived EVs exert same ben-
eficial effects even more advantages. Overall, MSC-derived 
EVs might be an emerging and new modality for treatment 
of autoimmune diseases but they are at first steps on the 
long route to clinical application and require further and 
comprehensive investigations.
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